- Visibility 98 Views
- Downloads 85 Downloads
- Permissions
- DOI 10.18231/j.ijce.35922.1759917440
-
CrossMark
- Citation
Innovative techniques in endodontics: Exploring the potential of 3D printing
3D printing is revolutionizing endodontics by offering enhanced precision, efficiency, and personalization in various clinical procedures. Key applications include guided endodontic access, where 3D-printed templates help clinicians navigate complex canal morphologies, reducing the risk of iatrogenic errors. This technology also aids in autotransplantation, enabling preoperative 3D-printed tooth replicas to optimize recipient site preparation, minimize extra-oral time, and preserve periodontal ligament cells, improving transplant success. Surgical guides derived from 3D printing improve the accuracy of endodontic microsurgery by precisely locating osteotomies and reducing risks to surrounding structures. Furthermore, Additionally, in regenerative endodontics, 3D printing supports the development of bioengineered scaffolds for dental pulp regeneration, fostering progress in tissue engineering. As the technology advances, its role in endodontics is expected to expand, enhancing clinical outcomes, educational practices, and the overall quality of patient care.
References
- Zaharia C, Gabor AG, Gavrilovici A, Stan AT, Idorasi L, Sinescu C, et al. Digital Dentistry —3D Printing Applications. J Int Med. 2017;2(1):50–3. https://doi.org/10.1515/jim-2017-0032
[Google Scholar] - The History of 3D Printing: 3D Printing Technologies from the 80s to Today. Available at: https://www.sculpteo.com/blog/2016/12/14/the-history-of-3d- printing-3d-printing technologies-from-the-80s-to-today/
- Hemant S Anju AJ. Process of 3D printer 3D Printing in Dentistry - Sculpting the Way it is. J Sci Tech Res. 2018;8(1):1–4.
- Dawood A, Marti B, Jackson VS, A Darwood. 3D printing in dentistry. Br Dent J. 2015;219(11):521–9. https://doi.org/10.1038/sj.bdj.2015.914
[Google Scholar] - Zein I, Hutmacher DW, Tan KC, Teoh SH. Fused deposition modeling of novel scaffold architectures for tissue engineering applications. Biomater. 2002;23(4):1169–85. https://doi.org/10.1016/s0142-9612(01)00232-0
[Google Scholar] - Anjali J, Jayakrishnan, Satish SV, Shetty KP, Shetty KN, Rai R, et al. 3D printing in dentistry: A new dimension of vision. Int J Appl Dent Sci. 2019;5(2):165–69.
- Kruth JP, Vandenbroucke B, Van Vaerenbergh J, Naert I. Digital manufacturing of biocompatible metal frameworks for complex dental prostheses by means of SLS/SLM. In: da Silva Bartolo PJ, editor. Virtual modeling and rapid manufacturing. 1st ed. London: Taylor & Francis Group; 2005. p. 139–45.
- Gali S, Sirsi S, “Review: 3D printing: The future technology in prosthodontics. Dent Oro-Fac Res. 2015;11(1):37–40.
- Pradnya VB, Seema DP, Wavdhane MB, Darshana K. 3D Printing: A Look into the Future of Endodontics. J Med Dent Sci Res. 2019;6(2):1–6.
- Shah P, Chong BS. 3D imaging, 3D printing and 3D virtual planning in endodontics. Clin Oral Investig. 2018;22(2):641–54. https://doi.org/10.1007/s00784-018-2338-9
[Google Scholar] - Connert T, Zehnder MS, Weiger R, Kühl S, Krastl G. Microguided Endodontics: Accuracy of a Miniaturized Technique for Apically Extended Access Cavity Preparation in Anterior Teeth. J Endod. 2017;43(5):787–90. https://doi.org/10.1016/j.joen.2016.12.016
[Google Scholar] - van der Meer WJ, Vissink A, Ng YL, Gulabivala K. 3D Computer aided treatment planning in endodontics. J Dent. 2016;45:67–72. https://doi.org/10.1016/j.jdent.2015.11.007
[Google Scholar] - De Toubes KMS, de Oliveira PAD, Machado SN, Pelosi V, Nunes E, et al. Clinical Approach to Pulp Canal Obliteration: A Case Series. Iran Endod J. 2017;12(4):527–33. https://doi.org/10.22037/iej.v12i4.18006
[Google Scholar] - Connert T, Zehnder MS, Amato M, Weiger R, Kühl S, Krastl G. Microguided Endodontics: a method to achieve minimally invasive access cavity preparation and root canal location in mandibular incisors using a novel computer-guided technique. Int Endod. 2018;51(2):247–55. https://doi.org/10.1111/iej.12809
[Google Scholar] - Connert T, Krug R, Eggmann F, Emsermann I, ElAyouti A, Weiger R, et al. Guided Endodontics versus Conventional Access Cavity Preparation: A Comparative Study on Substance Loss Using 3- dimensional-printed Teeth. J Endod. 2019;45(3):327–31. https://doi.org/10.1016/j.joen.2018.11.006
[Google Scholar] - Gabriel K, Marc SZ, Thomas C, Roland W, Sebastian K. Guided Endodontics: a novel treatment approach for teeth with pulp canal calcification and apical pathology. Dent Traumatol. 2016;32(3):240–6. https://doi.org/10.1111/edt.12235
[Google Scholar] - Tsukiboshi M. Autotransplantation of teeth: requirements for predictable success. Dent Traumatol. 2002;18(4):157–80. https://doi.org/10.1034/j.1600-9657.2002.00118.x
[Google Scholar] - Lee SJ, Kim E. Minimizing the extraoral time in autogenous tooth transplantation: use of computer-aided rapid prototyping (CARP) as a duplicate model tooth. Restor Dent Endon. 2012;37(3):136–41. https://doi.org/10.5395/rde.2012.37.3.136
[Google Scholar] - He W, Tian K, Xie X, Wang E, Cui N. Computer-aided autotransplantation of teeth with 3D printed surgical guides and arch bar: a preliminary experience. Peer J. 2018;6:e5939. https://doi.org/10.7717/peerj.5939
[Google Scholar] - Strbac GD, Schnappauf A, Giannis K, Bertl MH, Moritz A, Ulm C. Guided Autotransplantation of Teeth: A Novel Method Using Virtually Planned 3-dimensional Templates. J Endod. 2016;42(12):1844–50. https://doi.org/10.1016/j.joen.2016.08.021
[Google Scholar] - Anssari Moin D, Derksen W, Verweij JP, van Merkesteyn R, Wismeijer D. A Novel Approach for Computer-Assisted Template- Guided Autotransplantation of Teeth with Custom 3D Designed/Printed Surgical Tooling. An Ex Vivo Proof of Concept. J Oral Maxillofac Surg.2016;74(5):895–902. https://doi.org/10.1016/j.joms.2016.01.033
[Google Scholar] - Verweij JP, Jongkees FA, Anssari Moin D, Wismeijer D, van Merkesteyn JPR. Autotransplantation of teeth using computer-aided rapid prototyping of a three-dimensional replica of the donor tooth: a systematic literature review. Int J Oral Maxillofac Surg. 2017;46(11):1466–74. https://doi.org/10.1016/j.ijom.2017.04.008
[Google Scholar] - Alattas MH. The Role of 3D Printing in Endodontic Treatment Planning: A Comprehensive Review. Eur J Dent. 2025;19(2):298–
- https://doi.org/10.1055/s-0044-1791242
[Google Scholar] - Kfir A, Telishevsky-Strauss Y, Leitner A, Metzger Z. The diagnosis and conservative treatment of a complex type 3 dens invaginatus using cone beam computed tomography (CBCT) and 3D plastic models. Int Endod J. 2013;46(3):275–88. https://doi.org/10.1111/iej.12013
[Google Scholar] - Reymus M, Liebermann A, Diegritz C, Keßler A. Development and evaluation of an interdisciplinary teaching model via 3D printing. Clin Exp Dent Res. 2021;7(1):3–10. https://doi.org/10.1002/cre2.334
[Google Scholar] - Reymus M, Stawarczyk B, Winkler A, Ludwig J, Kess S, Krastl G, et al. A critical evaluation of the material properties and clinical suitability of in-house printed and commercial tooth replicas for endodontic training. Int Endod J. 2020;53(10):1446–54. https://doi.org/10.1111/iej.13361
[Google Scholar] - Ordinola-Zapata R, Bramante CM, Duarte MA, Cavenago BC, Jaramillo D, Versiani MA. Shaping ability of reciproc and TF adaptive systems in severely curved canals of rapid microCT-based prototyping molar replicas. J Appl Oral Sci. 2014;22(6):509-15. https://doi.org/10.1590/1678-775720130705
[Google Scholar] - Eken R, Sen OG, Eskitascioglu G, Belli S. Evaluation of the Effect of Rotary Systems on Stresses in a New Testing Model Using a 3- Dimensional Printed Simulated Resin Root with an Oval-shaped Deepika et al. / IP Indian Journal of Conservative and Endodontics 2025;10(3):155-161 161 Canal: A Finite Element Analysis Study. J Endod. 2016;42(8):1273–8. https://doi.org/10.1016/j.joen.2016.05.007
[Google Scholar] - Gok T, Capar ID, Akcay I, Keles A. Evaluation of Different Techniques for Filling Simulated C-shaped Canals of 3-dimensional Printed Resin Teeth. J Endod. 2017;43(9):1559–64. https://doi.org/10.1016/j.joen.2017.04.029
[Google Scholar] - Yahata Y, Masuda Y, Komabayashi T. Comparison of apical centring ability between incisal-shifted access and traditional lingual access for maxillary anterior teeth. Aust Endod J. 2017;43(3):123–8. https://doi.org/10.1111/aej.12190
[Google Scholar] - Sinibaldi R, Conti A, Pecci R, Plotino G, Guidotti R, Grande NM, et al. Software tools for the quantitative evaluation of dental treatment effects from µCT scans. J Biomed Graphics Computing. 2013;3(4):85–100. https://doi.org/10.5430/jbgc.v3n4p85
[Google Scholar] - Haupt F, Pfitzner J, Hülsmann M. A comparative in vitro study of different techniques for removal of fibre posts from root canals. Aust Endod J. 2018;44(3):245–50. https://doi.org/10.1111/aej.12230
[Google Scholar] - Perez C, Finelle G, Couvrechel C. Optimisation of a guided endodontics protocol for removal of fibre-reinforced posts. Aust Endod J. 2020;46(1):107–14. https://doi.org/10.1111/aej.12379
[Google Scholar] - Reis T, Barbosa C, Franco M et al. 3D-printed teeth in endodontics: why, how, problems and future—a narrative review. Int J Environ Res Public Health. 2022;19(13):7966. https://doi.org/10.3390/ijerph19137966
[Google Scholar] - Rezaie F, Farshbaf M, Dahri M, Masjedi M, Maleki R, Amini F, et al. 3D printing of dental prostheses: current and emerging applications. J Compos Sci. 2023;7(2):80. https://doi.org/10.3390/jcs7020080
[Google Scholar] - Anderson J, Wealleans J, Ray J. Endodontic applications of 3D printing. Int Endod J. 2018;51(9):1005–8. https://doi.org/10.1111/iej.12917
[Google Scholar] - Pinsky HM, Champleboux G, Sarment DP. Periapical surgery using CAD/CAM guidance: preclinical results. J Endod. 2007;33(2):148–
- https://doi.org/10.1016/j.joen.2006.10.005
[Google Scholar] - Patel S, Aldowaisan A, Dawood A. A novel method for soft tissue retraction during periapical surgery using 3D technology: A case report. Int Endod J. 2017;50(8):813–22. https://doi.org/10.1111/iej.12701
[Google Scholar] - Von Arx T, Jensen SS, Hänni S. Clinical and radiographic assessment of various predictors for healing outcome 1 year after periapical surgery. J Endod. 2007;33(2):123–8. https://doi.org/10.1016/j.joen.2006.10.001
[Google Scholar] - Tsesis I, Rosen E, Taschieri S, Telishevsky Strauss Y, Ceresoli V, Del Fabbro M. Outcomes of surgical endodontic treatment performed by a modern technique: an updated meta-analysis of the literature. J Endod. 2013;39(3):332–9. https://doi.org/10.1016/j.joen.2012.11.044
[Google Scholar] - Song M, Shin SJ, Kim E. Outcomes of endodontic micro-resurgery: a prospective clinical study. J Endod. 2011;37(3):316–20. https://doi.org/10.1016/j.joen.2010.11.029
[Google Scholar] - Setzer FC, Kratchman SI. Present status and future directions: Surgical endodontics. Int Endod J. 2022;55(Suppl 4):1020–58.
- Ahn SY, Kim NH, Kim S, Karabucak B, Kim E. Computer-aided Design/Computer-aided Manufacturing-guided Endodontic Surgery: Guided Osteotomy and Apex Localization in a Mandibular Molar with a Thick Buccal Bone Plate. J Endod. 2018;44(4):665–
- https://doi.org/10.1016/j.joen.2017.12.009
[Google Scholar] - Ye S, Zhao S, Wang W, Jiang Q, Yang X. A novel method for periapical microsurgery with the aid of 3D technology: a case report. BMC Oral Health. 2018;18(1):85. https://doi.org/10.1186/s12903-
[Google Scholar] 018-0546-y. - Hawkins TK, Wealleans JA, Pratt AM, Ray JJ. Targeted endodontic microsurgery and endodontic microsurgery: a surgical simulation comparison. Int Endod J. 2020;53(5):715–22. https://doi.org/10.1111/iej.13243
[Google Scholar] - Giacomino CM, Ray JJ, Wealleans JA. Targeted endodontic microsurgery: a novel approach to anatomically challenging scenarios using 3-dimensional-printed guides and trephine burs—a report of 3 cases. J Endod. 2018;44(4):671–7. https://doi.org/10.1016/j.joen.2017.12.019
[Google Scholar] - Peng L, Zhao J, Wang ZH, Sun YC, Liang YH. Accuracy of root- end resection using a digital guide in endodontic surgery: an in vitro study. J Dent Sci. 2021;16(1):45–50. https://doi.org/10.1016/j.jds.2020.06.024
[Google Scholar] - Kim JE, Shim JS, Shin Y. A new minimally invasive guided endodontic microsurgery by cone beam computed tomography and 3-dimensional printing technology. Restor Dent Endod. 2019;44(3):e29. https://doi.org/10.5395/rde.2019.44.e29
[Google Scholar] - Buniag AG, Pratt AM, Ray JJ. Targeted endodontic microsurgery: a retrospective outcomes assessment of 24 cases. J Endod. 2021;47(5):762–9. https://doi.org/10.1016/j.joen.2021.01.007
[Google Scholar] - Sureshchandra B, Roma M. Regeneration of dental pulp: A myth or hype. Endodontol. 2013;25:139–55.
- Yelick PC, Vacanti JP. Bioengineered teeth from tooth bud cells. Dent Clin N Am 2006;50(2):191–203. https://doi.org/10.1016/j.cden.2005.11.005
[Google Scholar] - Dhariwala B, Hunt E, Boland T. Rapid prototyping of tissue- engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng. 2004;10(9-10):1316–22.
- Tarika Kohli MA. 3D Printing in Dentistry – An Overview. Acta Sci Dent Sci. 2019; 3:35–41.
- Murphy SV, De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4(4):370–80.
- Zhao DK, Xu HQ, Yin J, Yang HY. Inkjet 3D bioprinting for tissue engineering and pharmaceutics. J Zhejiang Univ Sci A. 2022;23(12):955–73. DOI:10.1631/jzus.A2200569
[Google Scholar] - Li X, Liu B, Pei B, Chen J, Zhou D, Peng J, et al. Inkjet bioprinting of biomaterials. Chem Rev. 2020;120(19):10793-10833. https://doi.org/10.1021/acs.chemrev.0c00008
[Google Scholar] - Ozbolat IT, Hospodiuk M. Current advances and future perspectives in extrusion-based bioprinting. Biomater. 2016;76:321–43. https://doi.org/10.1016/j.biomaterials.2015.10.076
[Google Scholar] - Sorkio A, Koch L, Koivusalo L, Deiwick A, Miettinen S, Chichkov B, et al. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks. Biomater. 2018;171:57–71.
- Liang Z, Liao X, Zong H, Zeng X, Liu H, Wu C, et al. Pioneering the future of dentistry: AI-driven 3D bioprinting for next-generation clinical applications. Transl Dent Res. 2025;1(1):100005. https://doi.org/10.1016/j.tdr.2024.100005
[Google Scholar] - Daly AC, Freeman FE, Gonzalez-Fernandez T, Critchley SE, Nulty J, Kelly DJ. 3D bioprinting for cartilage and osteochondral tissue engineering. Adv Healthc Mater. 2017;6(22):1700298. https://doi.org/10.1002/adhm.201700298
[Google Scholar] - Zhang Z, Wang B, Hui D, Qiu J, Wang S. 3D bioprinting of soft materials-based regenerative vascular structures and tissues. Compos Part B Eng. 2017;123:279–91. https://doi.org/10.1016/j.compositesb.2017.05.011
[Google Scholar] - Frankowski J, Kurzątkowska M, Sobczak M, Piotrowska U. Utilization of 3D bioprinting technology in creating human tissue and organoid models for preclinical drug research: state-of-the-art. Int J Pharm. 2023;644:123313. https://doi.org/10.1016/j.ijpharm.2023.123313
[Google Scholar] - Putra NE, Leeflang MA, Klimopoulou M, Dong J, Taheri P, Huan Z, et al. Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes. Acta Biomater. 2023; 162:182-98.
- Sadeghianmaryan A, Naghieh S, Alizadeh Sardroud H, Yazdanpanah Z, Afzal Soltani Y, Sernaglia J, et al. Extrusion-based printing of chitosan scaffolds and their in vitro characterization for cartilage tissue engineering. Acta Biomater. 2023:162:182–98. https://doi.org/10.1016/j.actbio.2023.03.033
[Google Scholar] - Rodriguez-Salvador M, Ruiz-Cantu L. Revealing emerging science and technology research for dentistry applications of 3D bioprinting. Int J Bioprint. 2018;5(1):170. https://doi.org/10.18063/ijb.v5i1.170
[Google Scholar] 162 Deepika et al. / IP Indian Journal of Conservative and Endodontics 2025;10(3):155-161 - Obregon F, Vaquette C, Ivanovski S, Hutmacher DW, Bertassoni LE. Three-dimensional bioprinting for regenerative dentistry and craniofacial tissue engineering. J Dent Res. 2015;94(9 Suppl):143S– 52S. https://doi.org/10.1177/0022034515588885
[Google Scholar]
How to Cite This Article
Vancouver
Deepika D, Rashid S, Gupta VA, Nagpal AK, Choudhary S. Innovative techniques in endodontics: Exploring the potential of 3D printing [Internet]. IP Indian J Conserv Endod. 2025 [cited 2025 Oct 14];10(3):155-161. Available from: https://doi.org/10.18231/j.ijce.35922.1759917440
APA
Deepika, D., Rashid, S., Gupta, V. A., Nagpal, A. K., Choudhary, S. (2025). Innovative techniques in endodontics: Exploring the potential of 3D printing. IP Indian J Conserv Endod, 10(3), 155-161. https://doi.org/10.18231/j.ijce.35922.1759917440
MLA
Deepika, Deepika, Rashid, Sibgutulah, Gupta, Vyakhya Akhileshkumar, Nagpal, Ajay Kumar, Choudhary, Shivendra. "Innovative techniques in endodontics: Exploring the potential of 3D printing." IP Indian J Conserv Endod, vol. 10, no. 3, 2025, pp. 155-161. https://doi.org/10.18231/j.ijce.35922.1759917440
Chicago
Deepika, D., Rashid, S., Gupta, V. A., Nagpal, A. K., Choudhary, S.. "Innovative techniques in endodontics: Exploring the potential of 3D printing." IP Indian J Conserv Endod 10, no. 3 (2025): 155-161. https://doi.org/10.18231/j.ijce.35922.1759917440