- Visibility 109 Views
- Downloads 86 Downloads
- Permissions
- DOI 10.18231/j.ijce.57510.1760178575
-
CrossMark
- Citation
The evolving landscape of biomimetic restorative dentistry: A review
A paradigm shifts from traditional dental procedures, biomimetic restorative dentistry (BRD) attempts to repair damaged teeth by imitating their natural structure, functionality, and appearance. This interdisciplinary field draws inspiration from biological processes to create innovative dental solutions that integrate seamlessly with natural tooth tissues. Unlike traditional methods that often involve extensive tooth reduction and the use of rigid, non-compatible materials, BRD prioritises the preservation of healthy tooth structure, leading to enhanced durability, longevity, and aesthetics of restorations. This review explores the fundamental ideas, variety of materials, cutting-edge clinical methods, and innovative uses of biomimetics in dentistry, including its function in tissue regeneration and the creation of intelligent materials. It also discusses the serious drawbacks and limitations of some recommended procedures, emphasizing the necessity of evidence-based validation to guarantee their widespread and successful application.
References
- Harkness, J.M. An idea man (the life of Otto Herbert Schmitt). IEEE Eng Med Biol Mag. 2004;23(6):20–41. https://doi.org/10.1109/memb.2004.1378631
[Google Scholar] - Bhushan B. Biomimetics: lessons from nature--an overview. Philos Trans Math Phys Eng Sci A. 2009;367(1893):1445–
- https://doi.org/10.1098/rsta.2009.0011
[Google Scholar] - Paryani M, Bhojwani PR, Ikhar A, Reche A, Paul P. Evolution of Biomimetic Approaches for Regenerative and Restorative Dentistry. Cureus. 2023;15(1):e33936. DOI 10.7759/cureus.33936
[Google Scholar] - Cramer MD. Biomimicry: innovation inspired by nature—Benyus. JM Libr J. 1997;122(11):92.
- Fayemi PE, Wanieck K, Zollfrank C, Maranzana N, Aoussat A. Biomimetics: process, tools and practice. Bioinspir Biomim. 2017;12(1): 011002.
- Hwang J, Jeong Y, Park JM, Lee KH, Hong JW, Choi J. Biomimetics: forecasting the future of science, engineering, and medicine. Int J Nanomedicine. 2015;10:5701–13
- Roulet J-F, Degrange M. Adhesion: TheSilent Revolution in Dentistry. Chicago, IL: Quintessence Publishing; 2000.
- Nakabayashi N, Pashley DH.Hybridization of Dental Hard Tissues.Chicago, IL: Quintessence Publishing; 1998.
- Fusayama T. New Concepts in Operative Dentistry: Differentiating Two Layers of Carious Dentin and Using an Adhesive Resin. Chicago, IL: Quintessence Publishing; 1980.
- Bottacchiari S. Composite Inlays and Onlays: Structural, Periodontal and Endodontic Aspects. Milan, Italy: Quintessenza Edizioni; 2016.
- Kishen A, Vedantam. Hydrodynamics indenting: Role of dentinal tubules and hydrostatic pressure on mechanical stress-strain distribution. Dent Mater. 2007;23(10):1296–306.
- Versluis A, Tantbirojn D, Pintado M, De Long R, Douglas WH. Residual shrinkage stress distributions in molars after composite restoration. Dent Mater. 2004;20(6):554–64
- Alleman DS, Matthew A, Alleman DS. The Protocols of Biomimetic Restorative Dentistry: 2002 to 2017 Increase the longevity of restorations with the biomimetic approach. Inside Dent.
- https://www.nejadinstitute.com/wp - content/uploads/2019/12/The_Protocols_of_Biomimetic_Restorati ve_Dentistry_2002_to_2017.pdf
- Trindade FZ, Valandro LF, de Jager N, Bottino MA, Kleverlaan CJ. Elastic properties of lithium disilicate versus feldspathic inlays: Effect on the bonding by 3D nite element analysis. J Prosthodont. 2018,27(8):741–7.
- Morin D, DeLong R, Douglas W. Clinical science cusp reinforcement by the acid etch technique. J Dent Res. 1984,;63(8):1075–8. https://doi.org/10.1177/00220345840630081401
[Google Scholar] - Lohbauer U, Frankenberger R, Clare A, Petschelt A, Greil P. Toughening of dental glass ionomer cements with reactive glass fibres. Biomater. 2004;25(22):5217–25. https://doi.org/10.1016/j.biomaterials.2003.12.027
[Google Scholar] - Arbaz S, Bakar W, Zaripah W, Mohamad D, Kannan TP. Various Recent Reinforcement Phase Incorporations and Modifications in Glass Ionomer Powder Compositions: A Comprehensive Review. J Int Oral Health. 2018;10(4):161–7.
- Leitune VCB, Collares FM, Takimi A, de Lima GB, Petzhold CL, Bergmann CP, et al. Niobium pentoxide as a novel filler for dental adhesive resin. J Dent. 2013;41(2):106–13. https://doi.org/10.1016/j.jdent.2012.04.022
[Google Scholar] - Kalra S, Singh A, Gupta M, Chadha V. Ormocer: An aesthetic direct restorative material; An in vitro study comparing the marginal sealing ability of organically modified ceramics and a hybrid composite using an armourer-based bonding agent and a conventional fifth-generation bonding agent. Contemp Clin Dent. 2012;3(1):48–53. https://doi.org/10.4103/0976-237X.94546
[Google Scholar] - Morin D, DeLong R, Douglas W. Cusp reinforcement by the acid- etch technique. J Dent Res . 1984;63(8):1075-
- https://doi.org/10.1177/00220345840630081401
[Google Scholar] Kidwai et al. / IP Indian Journal of Conservative and Endodontics 2025;10(3):162-173 172 - Zhang K, Zhang N, Weir MD, Reynolds MA, Bai Y, XuHHK. Bioactive Dental Composites and Bonding Agents Having Remineralizing and Antibacterial Characteristics. Dent Clin North Am. 2017;61(4):669–87.
- Sharma S, Maurya S, Suman A. Cention N: A Review. Int J Curr Res. 2018;10(5):111–2.
- Zafar, M.S. A Comparison of dental restorative materials and mineralized dental tissues for surface nano mechanical properties. Life Sci J. 2014;11(10s):19–24.
- Mahoney E, Holt A, Swain M, Kilpatrick N. The hardness and modulus of elasticity of primary molar teeth: an ultra-micro- indentation study. J Dent. 2000;28(8):589–94. https://doi.org/10.1016/s0300-5712(00)00043-9
[Google Scholar] - Kumar N, Zafar MS, Dahri WM, Khan MA, Khurshid Z, Najeeb S. Effects of deformation rate variation on biaxial flexural properties of dental resin composites. J Taibah Univ Med Sci. 2018;13(4):319–
- https://doi.org/10.1016/j.jtumed.2018.04.012
[Google Scholar] - Chung S, Yap A, Tsai K, Yap F. Elastic modulus of resin-based dental restorative materials: A micro indentation approach. J Biomed Mater Res B Appl Biomater. 2005;72(2):246-53. https://doi.org/10.1002/jbm.b.30145
[Google Scholar] - Scribante A, Bollardi M, Chiesa M, Poggio C, Colombo M. Flexural properties and elastic modulus of different esthetic restorative materials: Evaluation after exposure to acidic drink. Bio Med Res Int. 2019:2019:5109481. https://doi.org/10.1155/2019/5109481
[Google Scholar] - Gomes T, Carvalho EM, Costa JF, Grande RHM, Bauer J. Effect of manipulation surface on the mechanical properties and fluoride release of resin-modified GIC. Rev Port Estomatol Med Dentária Cir Maxilofac. 2016;57(3)132–7. http://dx.doi.org/10.1016/j.rpemd.2016.08.003
[Google Scholar] - Helvatjoglu-Antoniades M, Papadogiannis Y, Lakes R, Palaghias G, Papadogiannis D. The effect of temperature on viscoelastic properties of glass ionomer cements and compomers. J Biomed Mater Res. B Appl Biomater. 2007;80(2):460–7. https://doi.org/10.1002/jbm.b.30618
[Google Scholar] - Isgrò G, Rodi D, Sachs A, Hashimoto M. Modulus of elasticity of two ceramic materials and stress-inducing mechanical deformation following fabrication techniques and adhesive cementation procedures of a dental ceramic. Int J Biomater. 2019:2019:4325845. https://doi.org/10.1155/2019/4325845
[Google Scholar] - Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass -ceramic. Dent Mater. 2016;32(7):908-14. https://doi.org/10.1016/j.dental.2016.03.013
[Google Scholar] - Ferracane JL. Resin composite—State of the art. Dent Mater. 2011;27(1):29–38. https://doi.org/10.1016/j.dental.2010.10.020
[Google Scholar] - Gaengler P, Hoyer I, Montag R. Clinical evaluation of posterior composite restorations: The 10-year report. J Adhes Dent. 2001;3(2):185–94.
- Wilder-Jr AD, May-Jr KN, Bayne SC, Taylor DF, Leinfelder, K.F. Seventeen-year clinical study of ultraviolet-cured posterior composite Class I and II restorations . J Esthet Dent. 1999;11(3):135–42. https://doi.org/10.1111/j.1708-
[Google Scholar] - tb00390.x.
- Beier US, Kapferer I, Burtscher D, Dumfahrt H. Clinical performance of porcelain laminate veneers for up to 20 years. Int J Prosthodont. 2012;25(1):79–85.
- Matinlinna J, Vallittu P. Bonding of resin composites to etchable ceramic surfaces–an insight review of the chemical aspects on surface conditioning. J Oral Rehabil. 2007;34(8):622-30. https://doi.org/10.1111/j.1365-2842.2005.01569.x
[Google Scholar] - Ho G, Matinlinna J. Insights on porcelain as a dental material. Part II: Chemical surface treatments. Silicon. 2011;3(3):117–23. https://doi.org/10.1007/s12633-011-9079-6
[Google Scholar] - Roulet J, Söderholm K, Longmate J. Effects of treatment and storage conditions on ceramic/composite bond strength. J Dent Res. 1995;74(1):381–7. https://doi.org/10.1177/00220345950740011501
[Google Scholar] - Burke FJ. From extension for prevention to the prevention of extension: (minimal intervention dentistry). Dent Update. 2003;30(9):492–8. https://doi.org/10.12968/denu.2003.30.9.492
[Google Scholar] - Singer L, Fouda A, Bourauel C. Biomimetic approaches and materials in restorative and regenerative dentistry: review article. BMC Oral Health. 2023 Feb 16;23(1):105. https://doi.org/10.1186/s12903-023-02808-3
[Google Scholar] - Alleman DS, Magne P. A systematic approach to deep caries removal end points: the peripheral seal concept in adhesive dentistry. Quintessence Int. 2012;43(3):197–208
- Zafar MS, Amin F, Fareed MA, Ghabbani H, Riaz S, Khurshid Z, et al. Biomimetic Aspects of Restorative Dentistry Biomaterials. Biomimetics (Basel). 2020;5(3):34. https://doi.org/10.3390/biomimetics503003
[Google Scholar] - Cao CY, Mei ML, Li Q, Lo ECM, Chu CH. Methods for biomimetic mineralisation of human enamel: A systematic review. Materials (Basel). 2015;8(6):2873–86. https://doi.org/10.3390/ma8062873
[Google Scholar] - Cao CY, Mei ML, Li Q, Lo ECM, Chu CH. Methods for biomimetic remineralization of human dentine: A systematic review. Int J Mol Sci. 2015;16(3):4615–27. https://doi.org/10.3390/ijms16034615
[Google Scholar] - Fletcher J, Walsh D, Fowler CE, Mann S.Electrospun mats of PVP/ACP nanofibers for remineralization of enamel toothsurfaces. Cryst Eng Comm. 2011;13(11):3692–7.
- Huang SB, Gao SS, Yu HY. Effect of nano-hydroxyapatite concentration on remineralization of initial enamel lesion in vitro. Biomed Mater. 2009;4(3):034104. https://doi.org/10.1088/1748-
[Google Scholar] 6041/4/3/034104. - Brunton PA, Davies RP, Burke JL, Smith A, Aggeli A, Brookes SJ, Kirkham J. Treatment of early caries lesions using biomimetic self- assembling peptides–a clinical safety trial. Br Dent J. 2013;215(4):E6. https://doi.org/10.1038/sj.bdj.2013.741
[Google Scholar] - Li QL, Ning TY, Cao Y, Zhang WB, Mei ML, Chu CH. A novel self- assembled oligopeptide amphiphile for biomimetic mineralization of enamel. BMC Biotechnol. 2014:14:32. https://doi.org/10.1186/1472-6750-14-32
[Google Scholar] - Hsu CC, Chung HY, Yang JM, Shi W, WuB. Influence of 8DSS peptide on nanomechanical behaviour of human enamel. J Dent Res. 2011;90(1):88–92. https://doi.org/10.1177/0022034510381904
[Google Scholar] - Wu D, Yang J, Li J, Chen L, Tang B, Chen X, et al. Hydroxyapatite- anchored dendrimer for in situ remineralization of human tooth enamel. Biomaterials. 2013;34(21):5036–47. https://doi.org/10.1016/j.biomaterials.2013.03.053
[Google Scholar] - Ruan Q, Liberman D, Bapat R, Chandrababu KB, Park JH, Moradian-Oldak J. Efficacy of amelogenin-chitosan hydrogel in biomimetic repair of human enamel in pH-cycling systems. J Biomed Eng Inform. 2016;2(1):119–28. https://doi.org/10.5430/jbei.v2n1p119
[Google Scholar] - Kwak SY, Litman A, Margolis HC, Yamakoshi Y, Simmer JP. Biomimetic Enamel regeneration mediated by leucine-rich amelogenin peptide. J Dent Res. 2017;96(5):524–30. https://doi.org/10.1177/0022034516688659
[Google Scholar] - Zaharia A, Muşat V, Anghel EM, AtkinsonI, Mocioiu OC, Buşilă M, Pleşcan VG. Biomimetic chitosan-hydroxyapatite hybrid biocoatings for enamel remineralization. Ceram Int. 2017;43(14):11390–402. https://doi.org/10.1016/j.ceramint.2017.05.346
[Google Scholar] - Wang H, Xiao Z, Yang J, Lu D, Kishen A, Li Y, et al. Oriented and ordered biomimetic remineralization of the surface of demineralized dental enamel using HAP@ACP nanoparticles guided by glycine. Sci Rep. 2017:7:40701. https://doi.org/10.1038/srep40701
[Google Scholar] - Xiao Z, Que K, Wang H, An R, Chen Z, Qiu Z, et al. Rapid biomimetic remineralization of the demineralized enamel surface using nanoparticles of amorphous calcium phosphate guided by chimaeric peptides. Dent Mater. 2017;33(11):1217–28. https://doi.org/10.1016/j.dental.2017.07.015
[Google Scholar] - Xie RQ, Feng ZD Li SW, Xu BB. EDTA assisted in the self- assembly of fluoride-substituted hydroxyapatite coating on an 173 Kidwai et al. / IP Indian Journal of Conservative and Endodontics 2025;10(3):162-173 enamel substrate. Cryst. Growth. Des. 2011;11(12):5206–14. DOI:10.1021/cg101708y
[Google Scholar] - Niu LN, Zhang W, Pashley DH, Breschi L, Mao J, Chen JH, Tay FR. Biomimetic remineralization of dentin. Dent Mater. 2014;30(1):77-
- https://doi.org/10.1016/j.dental.2013.07.013
[Google Scholar] - Huang Z, Qi Y, Zhang K, Gu L, Guo J, Wang R, Mai S. Use of experiment resin-based materials doped with carboxymethyl chitosan and calcium phosphate microfilters induce biomimetic remineralization of caries-affected dentin. J Mech Behav Biomed Mater. 2019:89:81–8. https://doi.org/10.1016/j.jmbbm.2018.09.008
[Google Scholar] - Liang K, Xiao S, Wu J, Li J, Weir MD, Cheng L, et al. Long-term dentin remineralization by poly (amido amine) and rechargeable calcium phosphate nanocomposite after fluid challenges. Dent Mater. 2018;34(4):607–18. https://doi.org/10.1016/j.dental.2018.01.001
[Google Scholar] - Xu Z, Neoh KG, Lin CC, Kishen AA. Biomimetic deposition of calcium phosphate minerals on the surface of partially demineralised dentine modified with phosphorylated chitosan. J Biomed Mater Res B Appl Biomater. 2011;98(1):150-9. https://doi.org/10.1002/jbm.b.31844
[Google Scholar] - Braga RR, Fronza BM. The use of bioactive particles and biomimetic analogues for increasing the longevity of resin-dentin interfaces: A literature review. Dent Mater J. 2020;39(1):62-68. https://doi.org/10.4012/dmj.2019-293
[Google Scholar] - Burkard B, Matthias H. Optimising Class II composite resin esthetic restoration by use of ceramic inserts. J Esthetic Dent. 1995;7(3);110–7.
- Bayne SC, Taylor DF, Heymann HO. Protection Hypothesis for composite wear. Dent Mater. 1992;8(5):305-9.
- https://doi.org/10.1016/0109-5641(92)90105-l
[Google Scholar]
How to Cite This Article
Vancouver
Kidwai Z, Verma P, Bains R. The evolving landscape of biomimetic restorative dentistry: A review [Internet]. IP Indian J Conserv Endod. 2025 [cited 2025 Oct 14];10(3):162-173. Available from: https://doi.org/10.18231/j.ijce.57510.1760178575
APA
Kidwai, Z., Verma, P., Bains, R. (2025). The evolving landscape of biomimetic restorative dentistry: A review. IP Indian J Conserv Endod, 10(3), 162-173. https://doi.org/10.18231/j.ijce.57510.1760178575
MLA
Kidwai, Zoya, Verma, Promila, Bains, Rhythm. "The evolving landscape of biomimetic restorative dentistry: A review." IP Indian J Conserv Endod, vol. 10, no. 3, 2025, pp. 162-173. https://doi.org/10.18231/j.ijce.57510.1760178575
Chicago
Kidwai, Z., Verma, P., Bains, R.. "The evolving landscape of biomimetic restorative dentistry: A review." IP Indian J Conserv Endod 10, no. 3 (2025): 162-173. https://doi.org/10.18231/j.ijce.57510.1760178575